대기오염에 의한 건강취약성 평가

○ (초)미세먼지 농도변화에 따른 초과사망륨의 변화를 사정하여 대기오염에 의한 피해를 정량적으로 파악하 고 정책수립의 기초자료 제공

1. 조사개요

○ 조사기간 : 2021년 1월 - 12월

○ 조사대상 : 2015년-2019년간 (초)미세먼지 농도, 일자별 사망자 수

○ 조사항목: 대기오염자료와 보건, 의료분야 빅데이터를 연계분석하여 대기오염에 의한 부산지역의 건강취약

성을 정량적으로 평가

2. 조사방법

- O 일반화 가법모형
 - 사망이나 질환에 대한 기후와 계절의 영향을 보정한 후, 대기오염물질 농도와의 비선형적 관계를 모형화하 는 시계열 분석방법
 - 포아송 분포를 따르는 시계열 자료의 변동요인을 제어하고 원하는 항의 변동성을 계산하기 위하여 일반화 가법모형 적용하였으며 기본모델식은 아래와 같음

log(일사망자수) = S(기상요소)+S(시간요소)+D(요일)+D(계절)+대기오염물질 기본모델

대기오염영향 모델

- ※ S: 평활함수, D: 가변수, 기상요소: 기온, 최고기온, 풍향, 기압, 상대습도
- ※ 시간요소: 년, 월, 일, 줄리안데이, 대기오염물질: 미세먼지, 초미세먼지

O 분석절차

- 사망원인은 국제질병분류표(ICD-10, International Classification of Disease 10)에 의거 자살이나 외인 사를 제외한 자연사망(A00-J99), 호흡기질환 사망(J00-J99), 심혈관질환 사망(I00-I99)으로 구분
- 취약계층에 대한 영향을 파악하기 위하여 사망자 연령을 전체연령과 65세 이상으로 구분

담당부서 : 대기진단평가팀(☎051-309-2764)

팀장: 정재은, 담당자: 도우곤

그림 1. 초과사망률 분석절차

3. 조사결과

- O 기본모델의 구축
 - 케이스별로 설명변수를 단계적으로 입력하여 최적의 모델을 선정하였으며 채택된 설명변수는 아래와 같음.
 - 각 케이스별 기본모델의 사망자수 예측값은 실제 사망자수의 일변화 패턴을 잘 반영하고 있으며, 잔차의 통계적 특성을 확인한 결과 편향성이 없어 적합한 것으로 판단됨.

표 1. 사망원인 케이스별 설명변수의 채택

	케이스 구분	채택된 설명변수		
	자연사망	상대습도, 기압, 년, 월, 일, 줄리안데이, 요일		
전체 연령	호흡기질환 사망	최고기온, 기온, 풍속, 기압, 년, 일, 줄리안데이, 요일		
_ 0	심혈관질환사망	최고기온, 기압, 일, 줄리안데이		
	자연사망	최고기온, 기압, 년, 일, 줄리안데이, 요일		
65세 이상	호흡기질환 사망	최고기온, 기압, 년, 일, 줄리안데이, 요일		
, 0	심혈관질환사망	기압, 년, 일, 줄리안데이		

O 대기오염영향모델의 구축

- 케이스별 기본모델에 일평균 (초)미세먼지를 입력하여(지연효과를 고려하기 위하여 당일-10일전의 농도사용) (초)미세먼지항의 계수를 도출
- (초)미세먼지항의 계수는 단위변화량에 대한 사망자수의 변화율을 의미하며 상대위험도와(Relative Risk)와 초과위험도(Excessive Risk)로 변환 가능
- 케이스별 (초)미세먼지의 지연효과 분석결과 모두 당일의 사망자수는 3일전의 일평균농도에 가장 많은 영향을 받고 있음.

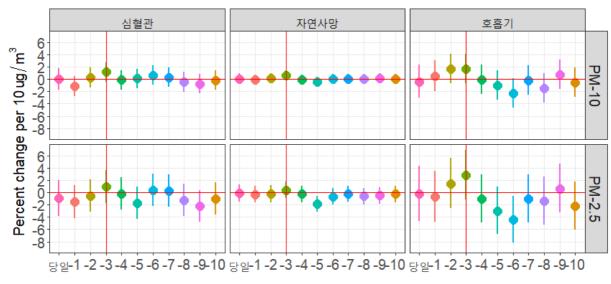


그림 2. (초)미세먼지 농도 10 ug/m³ 증가에 따른 지연일자별 초과사망률 변화

- (초)미세먼지 일평균 증가(10 ug/m³)는 자연사망을 0.42-0.64%, 호흡기질환의 사망을 1.69-2.8%, 심혈관 질환의 사망을 0.91-1.16% 증가시키는 것으로 추정됨.
- 65세 이상과 호흡기 질환의 사망률 증가가 뚜렷하게 높으며 호흡기질환의 사망률 증가는 초미세먼지 영향이 더 놓음.

Ŧ	2	3인저	익평규	노도에	대하	케이스벽	초과사망률(95%	시리그가)	부포
	۷.	J = ' '	= 0 i''	\circ	717	/II ~ I — P	THA 0 50/3/0	~~~	11 —

케이스 구분		초과사망률(%)(95% 신뢰구간)			
		PM-10(10 ug/m ³)	PM-2.5(10 ug/m ³)		
전체 연령	자연사망	0.64 (-0.17-1.47)	0.42 (-0.07-1.77)		
	호흡기질환 사망	1.69 (-0.68-4.13)	2.80 (-0.37-4.64)		
	심혈관질환 사망	1.16 (-0.42-2.76)	0.91 (-0.67-2.81)		
	자연사망	0.85 (-0.92-1.78)	0.66 (-0.85-2.19)		
65세 이상 	호흡기질환 사망	2.10 (-1.15-6.91)	3.18 (-0.93-7.46)		
	심혈관질환 사망	1.05 (-1.70-3.59)	0.76 (-2.08-3.69)		

- ** 서울(배현주, 2014), PM-10, 자연사망: 0.44%, 심혈관: 0.76%, PM-2.5, 자연사망: 0.95%, 심혈관: 1.63%
- ** 네덜란드(Janssen et al., 2013), PM-10, 자연사망: 0.6%, PM-2.5, 자연사망: 0.8%
- * 유럽(Samoli et al., 2013), PM-10, 자연사망: 0.32%, PM-2.5, 자연사망: 0.55%
- * 중국(Lin et al., 2017), PM-2.5, 자연사망: 0.9%, 호흡기: 0.7%, 심혈관: 1.2%

○ 구군별 초과사망률 추정

- 케이스별 기본모델에 구군별 3일전의 일평균 (초)미세먼지를 입력하여 초과사망률을 계산.
- 미세먼지의 초과사망률은 0.24%(영도구)-0.81%(해운대구)였으며 호흡기질환은 연제구, 심혈관질환은 해운 대구에서 가장 높았음. 65세 이상의 초과사망률은 0.52%(기장군)-1.56%(동래구)였으며 전체연령 대비 높았음.
- 초미세먼지의 초과사망률은 0.01%(기장군)-1.02%(동래구)였으며 호흡기질환은 동래구, 심혈관질환은 영도 구에서 가장 높았음. 65세이상의 초과사망률은 0.12%(기장군)-1.09%(동래구)였으며 전체연령 대비 높았음.

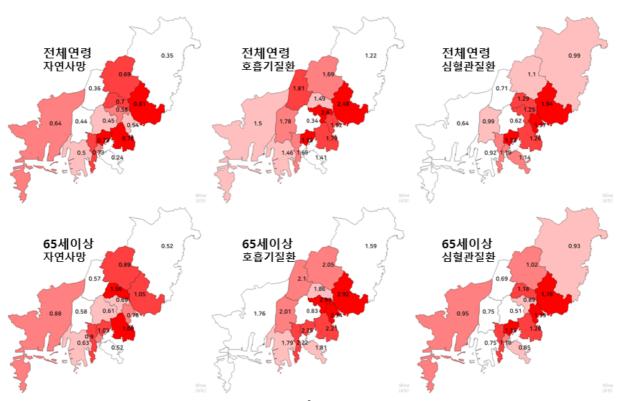


그림 3. 미세먼지 농도 10 ug/m³ 증가에 구군별 초과사망률 분포

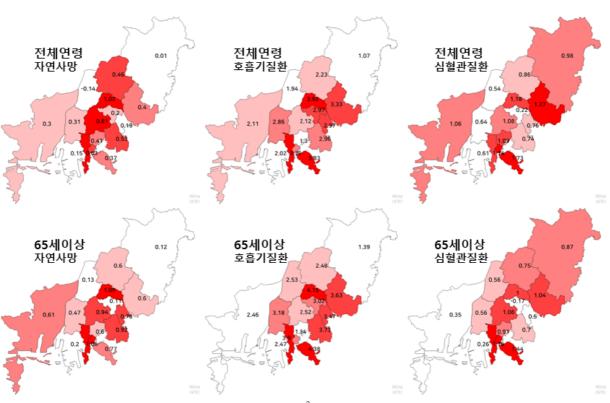


그림 4. 초미세먼지 농도 10 ug/m^3 증가에 구군별 초과사망률 분포

4. 활용방안

- 주요 질환별 진료건수 등 의료 빅데이터를 추가하고 이에 따른 비용편익분석 실시로 실제적인 피해효과 산정
- 대기오염진단평가시스템의 모델결과를 추가하여 상세 격자별 피해규모 산정

5. 기대효과

○ 대기오염에 의한 피해는 관련질환의 증가, 사망률 증가 이에 따른 비용발생 등으로 나타남. 농도분포와 피해 규모의 정도가 지역별로 상이하므로 농도저감이 아니라 피해저감이 우선되는 정책수립이 필요함.