
낙동강하구 통합환경모니터링

○ 낙동강 하굿둑 개방에 대비하여 하구 수질 및 퇴적물, 동·식물 플랑크톤에 대한 모니터링을 통해 종합적인 물환경 현황을 파악하여 수질관리에 활용하고자 함

1. 조사개요

- O 조사근거
 - 물환경보전법 제9조(수질의 상시측정 등)
 - 낙동강하구 염분 모니터링 시스템 구축 및 환경조사 추진계획[시 하천살리기추진단-291(2016.1.15.)]
 - 2022년 낙동강 하구 통합환경모니터링 추진계획(친수환경팀-22(2022.1.5.))
- **○** 조사기간 : 2022년 1월 ~ 12월
- 조사지점 : 낙동강, 서낙동강, 평강천, 맥도강 10개 지점

	지 :	점 당	Ħ _O	수질	퇴적물	생 물 상
		1	물금취수장	0	0	0
	_	2	대동화명대교	\bigcirc	0	\circ
본류(🌑)	낙 동	3	구포대교	\bigcirc	0	\circ
	· · · · · · · · · · · · · · · · · · ·	4	서부산낙동강교	\bigcirc	0	\circ
	O	5	낙동강하굿둑	\circ	0	-
해수(●)		6	을숙 도선착장	0	0	-
	서낙동강	7	김해교	\circ	0	0
	71350	8	녹산수문	\circ	_	-
지류(●)	평강천	9	울만교	\circ	0	0
	맥도강	10	맥도배수펌프장 퇴적물(신노전교)	0	0	0

그림 1. 조사지점

2. 조사방법

- 시료채취: 낙동강은 낙동강관리본부 선박 협조 이용, 그 외 서낙동강, 맥도강, 평강천은 강 중앙 교량 위에서 채수
- 분석 및 평가방법
 - 수질 및 동·식물 플랑크톤: 수질오염공정시험기준
 - 퇴적물 : 수질오염공정시험기준(퇴적물편) 및 하천·호소 퇴적물 오염평가 기준

담당부서 : 친수환경팀(☎051-309-2784) 팀장: 김미희, 담당자: 김효진

O 조사항목 및 주기

구 분	항 목 수	조 사 항 목	주 기
수질 (10개 지점)	27	pH, 수온, DO, EC, BOD, COD, TOC, SS, TN, DTN, NH₄-N, NO₃-N, TP, DTP, PO₄-P, Chl-a, CN, Phenols, ABS, Cr ⁶⁺ , 분원성대장균군수, 총대장균군수, Cd, Pb, As, Hg, Sb	12회/년 (매월)
동·식물플랑크톤 (7개 지점)	-	동·식물플랑크톤 동정 (우점종, 총개체수, 총세포수, 총출현종수, 우점도지수, 종다양도지수 산출)	(매월)
 퇴적물	5 (수질)	수심, 수온, DO, pH, EC	2회/년
(10개 지점)	16 (퇴적물)	함수율, 완전연소가능량, CODsed, TN, TP, 수용성인, Pb, Zn, Cu, Cr, Ni, As, Cd, Hg, Al, Li	(5, 10월)

3. 수질 조사결과

O 수문 환경

- 연간 누적강우량 865 mm [최대 92 mm (9.6.)]으로 전년 대비 강우량 감소 ('21년, 1515 mm) 및 평년 강우량의 62 % 수준
- 평균유량은 최대 4,746 m³/sec (9.7.), 평균 180 m³/sec (*강우량 및 유량 자료 출처 : 국가수자원관리종합정보시스템(WAMIS))

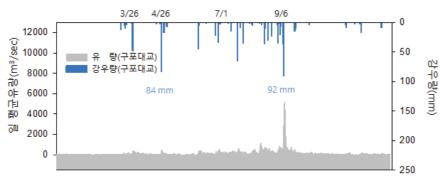


그림 2. 일 평균유량 및 강우량 (2022.1.1.~12.31. 낙동강 구포대교)

O 수질 현황

- 유기물질은 낙동강 본류에서 연평균 BOD기준 Ib(좋음) 등급으로 양호한 수질을 유지하였으나, 서낙동강 Ⅲ(보통) 등급, 평강천과 맥도강은 Ⅳ(약간나쁨) 등급으로 계절적으로 수질 변동폭이 컸음. 특히, 서낙동강 등 지류는 본류보다 조류 번성 및 하절기 강우에 의한 유기물 농도 증가로 계절적인 수질 변동폭이 큼
 - 낙동강(물금취수장~하굿둑): BOD 1.6 ~ 1.8 mg/L, TOC 3.6 ~ 3.7 mg/L
 - 낙동강하굿둑 외측(을숙도선착장) : BOD 1.3 mg/L, TOC 2.4 mg/L
 - 서낙동강, 평강천, 맥도강 : BOD 3.9 ~ 6.2 mg/L, TOC 4.3 ~ 5.6 mg/L
- 영양염류는 본류가 지류보다 낮았고, 총인 농도는 본류, 서낙동강, 맥도강이 생활환경 기준(TP, 연평균) Ⅱ (약가좋음) 등급, 평강천 Ⅲ(보통) 등급으로 조사 됨
 - 총질소 : 본류 2.40 ~ 2.60 mg/L, 지류 2.30 ~ 3.04 mg/L
 - •총 인: 본류 0.045 ~ 0.055 mg/L, 지류 0.079 ~ 0.116 mg/L
- 부영앙화지수(TSIKo)는 본류는 58.1 ~ 61.9로 부영양 상태, 지류는 64.4 ~ 74.4로 연중 부영양에서 과영양

상태였음

- 클로로필a는 하절기에 조류 과다증식 및 녹조 발생으로 증가하였고, 특히 정체수역인 서낙동강 등 지류에서는 연중 조류 증식이 많았고 클로로필a 농도가 높았음
 - 낙동강 18.8 ~ 26.5 mg/m³, 서낙동강 등 20.3 ~ 53.4 mg/m³
- 중금속 및 시안, 페놀 등은 검출되지 않았음

표 1. 수질조사 결과(2022년 연평균)

	채수지점	등급* (BOD 기준	<u>₹</u>)	BOD (mg/L)	TOC (mg/L)	SS (mg/L)	T-N (mg/L)	T-P (mg/L)	Chl-a (mg/m³)
	물금취수장	I b(좋음)		1.8	3.7	5.8	2.41	0.047	25.8
	대동화명대교	I b(좋음)		1.7	3.7	7.4	2.54	0.055	26.5
낙동강	구포대교	I b(좋음)	G°	1.6	3.6	5.8	2.60	0.045	19.2
	서부산낙동강교	I b(좋음)	Con Control	1.7	3.6	6.3	2.46	0.054	21.0
	낙동강하굿둑	I b(좋음)	Con Control	1.6	3.6	6.4	2.40	0.049	18.8
	! 숙도선착장	I b(좋음)	G°.	1.3	2.4	6.6	1.14	0.054	5.5
서낙	김해교	III(보통)		3.9	4.3	11.9	2.30	0.084	20.3
동강	녹산수문	III(보통)		4.4	5.0	17.2	3.04	0.079	30.4
평강천	울만교	IV(약간 나쁨)		6.2	5.6	13.0	2.47	0.116	53.4
맥도강	맥도배수펌프장	IV(약간 나쁨)		5.3	4.9	12.8	2.30	0.090	25.4

^{*} 환경정책기본법 [별표] 하천 생활환경기준 적용

O 연도별 수질 변화

- 낙동강 본류는 유기물질, 영양염류 등의 연평균 농도는 전년과 유사하였으며, 생활환경 기준 BOD I b(좋음), 총인Ⅱ(약간 좋음) 등급 유지
- 지류 연평균 유기물질(BOD) 농도는 전년과 유사하거나 소폭 증가하였으며 서낙동강은 Ⅲ(보통), 평강천과 맥도강은 IV(약간 나쁨) 등급, 총인의 농도는 서낙동강과 맥도강은 II(약간 좋음) 등급 유지 중이며, 평강천 Ⅲ(보통) 등급임

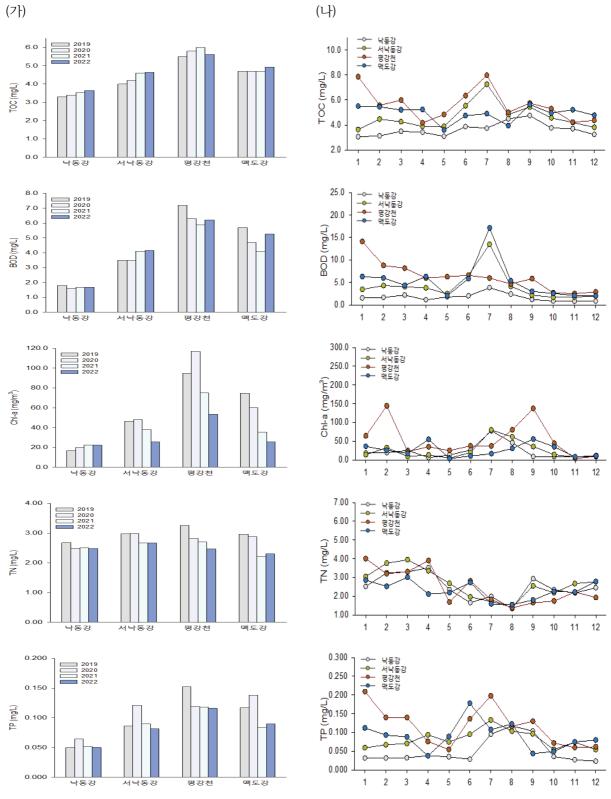


그림 3. (가)연도별(2019-2022) 수질변화, (나)2022년 월별 수질변화

4. 동·식물 플랑크톤 조사결과

O 수계별 동물플랑크톤 출현 현황

- 낙동강은 연간 총 22종 출현하였고, 월별 개체수는 160 ~ 1360 개체/L 였음
 - 종다양도지수 0.52 ~ 0.93, 우점도지수 0.38 ~ 0.86
 - 우점종 : Polyrthra sp., Keratella sp. 등 윤충류
- 서낙동강, 평강천 및 맥도강은 연간 총 16 ~ 18종 출현하였고, 월별 개체수는 80 ~ 5920 개체/L 였음
 - 종다양도지수 0.22 ~ 0.88. 우점도지수 0.48 ~ 1.00
 - 우점종 : Polyarthra sp., Keratella sp. 등 윤충류

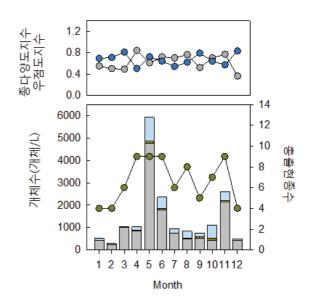
○ 동물플랑크톤 분포

- 연중 윤충류가 우점하였고, 다음으로 요각류, 지각류 순으로 분포하였음
- 동절기 이후 수온 상승으로 동물플랑크톤의 활동성이 증가하고, 먹이원이 되는 식물플랑크톤의 증가로 습식 률이 증가하게 되어 개체수 증가
- 대부분 지점 윤충류에 의한 우점이 지속되며, 낙동강에 비해 서낙동강 등 지류가 요각류 · 지각류 등 출현 종이 다양하며 계절적이 변동폭이 큼

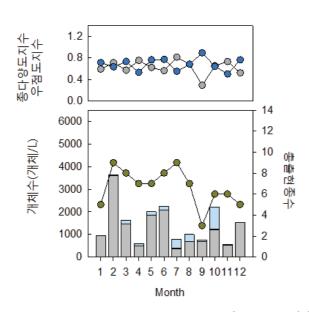
O 수계별 식물플랑크톤 출현 현황

- 낙동강은 연간 총 108종 출현하였고, 월별 세포수는 88 ~ 299 831 cells/mL 였음
 - 종다양도지수 0.36 ~ 1.31, 우점도지수 0.32 ~ 0.98
 - 우점종 : Stephanodiscus sp. 등 규조류(1분기) *Microcystis* sp. 등 남조류(2,3,4분기)
- 서낙동강, 평강천, 맥도강은 연간 총 117종 출현하였고, 월별 세포수는 890 ~ 106 992 cells/mL 였음
 - 종다양도지수 0.06 ~ 1.23, 우점도지수 0.29 ~ 0.99
 - 우점종 : Stephanodiscus sp., Fragilaria sp. 등 규조류(1분기) Microcystis sp. 등 남조류(2,3,4분기)

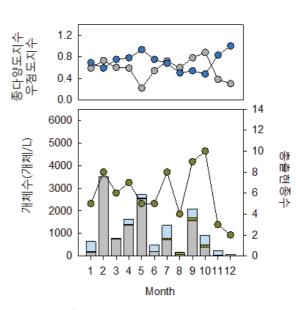
O 식물플랑크톤 분포


- 1분기 이후 수온이 상승으로 출현종수 증가
 - 1-3월 ⇨ 동절기 규조류 우점

 - 5월 ⇨ 녹조류 출현 등 출현 종 다양
 - 6월 다 수온 상승 및 일조량 증가로 Microcystis sp. 등 남조류 증가
 - 7-8월 ⇨ 남조류 대량 발생으로 녹조현상 빈번
 - 9월 이후 ⇨ 남조류 개체 수 감소, 규조류 출현 증가
- 하절기 수온 상승과 전년 대비 강우 부족으로 남조류 개체 수 증가 및 녹조 발생
 - 하절기(6~9월) 강우량(mm) : '21(1,278.1) ⇒ '22(636.1)
 - 하절기 남조류 발생량(본류 평균, cells/mL) : '21(17,890) ⇨ '22(427,802)
 - 하절기 녹조 유발 주요 남조류는 마이크로시스티스(Microcystis)


(가) 낙동강

종다양도지수 우점도지수 1.2 0.8 0.4 0.0 14 6000 12 5000 개체수(개체/L) 10 사 네 산 연기 4000 8 3000 恢 6 2000 4 1000 2 9 101112 Month


(나) 서낙동강

(다) 평강천

(라) 맥도강

윤충류□ 요각류□ 요각류○ 종다양도○ 우점도

그림 4. 월별 동물플랑크톤 세포수, 총출현종수, 종다양도, 우점도(2022년)

(다) 평강천 (라) 맥도강

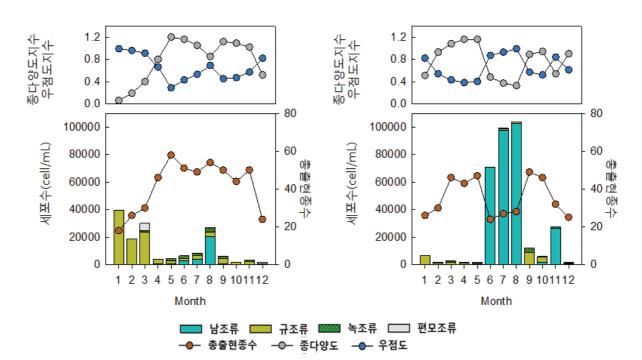
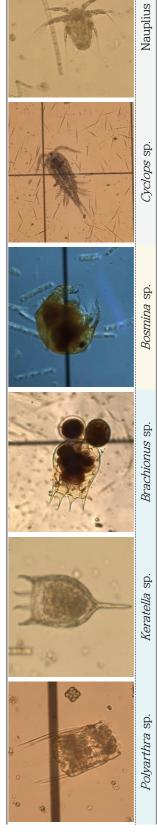



그림 5. 월별 식물플랑크톤 세포수, 총출현종수, 종다양도, 우점도(2022년)

표 2. 동물플랑크톤 출현 현황(2019-2022)

																-	
	뺡	출현종수 종대	器사용	수잼	수점증	출현종수	출현종수 종대양도	수잼	우점종	출현종수	종사양	생	아 삼 왕	출현종수	* 종생	格	수점중
15	[분기 1	14 1.	60	0.46	Polyarthra sp.	14	1.04	0.50	Polyarthra sp.	14	0.70	99.0	Brachionus sp.	14	1.02	0.46	Polyarthra sp.
i	2분기 1	.6 0.	-77	0.59	Keratella sp.	10	99.0	0.59	Keratella sp.	10	0.64	99.0	Keratella sp.	Π	0.63	0.61	Cyclops sp.
2013 3분	3분기 2	,1 0.	0.84	0.53	Keratella sp.	19	0.92	0.49	Keratella sp.	16	0.84	0.45	Keratella sp.	13	0.68	0.67	Cyclops sp.
4	4분기 1	1 0.	0.70	0.63	Nauplius	11	0.58	99.0	Polyarthra sp.	11	0.55	0.73	Synchaeta sp.	6	0.54	0.73	Keratella sp.
17	[분기 1	3 0.	0.55	0.78	Synchaeta sp.	11	0.70	09.0	Synchaeta sp.	10	0.46	0.79	Synchaeta sp.	12	0.70	0.73	Keratella sp.
L	2분기 1	5 0.	0.82	0.48	Keratella sp.	14	0.63	99.0	Keratella sp.	15	0.59	0.73	Polyarthra sp.	10	0.45	0.82	Keratella sp.
2020 3₹	3분기 1	.0	0.88	0.48	Keratella sp.	16	0.71	0.65	Keratella sp.	16	0.60	99.0	Brachionus sp.	16	0.78	0.55	Polyarthra sp.
4	4분기 1	14 0.	0.77	0.56	Trichocerca sp.	∞	0.51	0.77	Asplanchna sp.	11	99.0	0.63	Asplanchna sp.	6	0.61	0.67	Nauplius
1	1분기 1	1 0.	0.81	0.52	Polyarthra sp.	∞	0.61	99.0	Polyarthra sp.	10	0.57	0.76	Polyarthra sp.	10	0.67	0.56	Polyarthra sp.
2 1	2분기 1	.1 0.	0.51	0.80	Keratella sp.	12	0.63	0.71	Keratella sp.	12	0.59	0.74	Keratella sp.	6	0.58	0.73	Nauplius
i	3분기 1	19 0.	0.81	0.54	Polyarthra sp.	16	69.0	0.67	Polyarthra sp.	12	0.53	0.76	Polyarthra sp.	10	0.68	0.60	Polyarthra sp.
4	4분기 1	14 0.	0.79	0.57	Keratella sp.	10	0.56	0.70	Keratella sp.	6	0.59	0.67	Keratella sp.	9	0.33	0.91	Nauplius
1.	1분기 1	1 0.	0.64	0.72	Keratella sp.	8	0.51	0.74	Keratella sp.	6	0.62	69'0	Brachionus sp.	11	0.64	0.68	Keratella sp.
i	2분기 1	.1 0.	0.63	69.0	Polyarthra sp.	16	0.72	0.62	Asplanchna sp.	12	0.64	69.0	Keratella sp.	6	0.45	0.82	Polyarthra sp.
7707	3분기 1	3 0.	0.65	0.72	Keratella sp.	12	99.0	0.65	Keratella sp.	12	0.59	0.71	Nauplius	14	0.70	0.57	Nauplius
4.	4분기 1	.0 0.	0.71	0.61	Keratella sp.	13	0.61	0.68	Polyarthra sp.	10	0.63	0.63	Keratella sp.	10	0.52	0.77	Nauplius

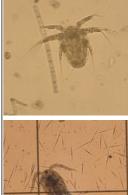


그림 6. 동물플랑크톤 주요 우점종

표 3. 식물플랑크톤 출현 현황(2019-2022)

				나 사망				서농강	±-0			평강전				格2	
		출현종수	器	수잼	수점증	출현종수	종양	格	수점종	출현종수	종장	썲	우점종	출현종수	水양	성점	수점종
	1분기	49	99.0	0.65	<i>Fragilaria</i> sp.	36	0.70	09:0	Stephanodiscus sp.	33	0.46	0.79	Stephanodiscus sp.	41	0.70	0.73	Stephanodiscus sp.
0100	2분기	77	0.93	0.53	Microcystis sp.	57	1.04	0.33	Aulacoseira sp.	28	0.39	0.39	Stephanodiscus sp.	48	0.95	0.52	Microcystis sp.
•	3분기	83	0.91	0.49	Microcystis sp.	78	0.61	0.77	Microcystis sp.	8	0.80	0.64	Microcystis sp.	72	0.71	0.66	Microcystis sp.
	4분기	80	0.71	0.64	Aphanizomenon sp.	71	0.84	0.62	Aulacoseira sp.	63	0.47	0.82	<i>Synura</i> sp.	99	0.62	0.72	Microcystis sp.
	1분기	26	99.0	0.65	Stephanodiscus sp.	49	0.70	09:0	Stephanodiscus sp.	20	0.46	0.79	Stephanodiscus sp.	62	0.70	0.73	Stephanodiscus sp
	2분기	70	0.58	0.76	Microcystis sp.	70	0.71	0.62	Microcystis sp.	72	0.71	0.67	Microcystis sp.	73	0.70	0.69	Pseudoanabaena sp
070	3분기	86	0.95	0.53	Microcystis sp.	72	0.78	99.0	Anabaena sp.	88	0.97	0.55	Microcystis sp.	74	0.55	0.79	Microcystis sp.
	4분기	61	0.56	0.79	Aphanizomenon sp.	63	0.82	99.0	Aphanizomenon sp.	99	0.73	0.73	<i>Synura</i> sp.	63	0.82	0.59	Microcystis sp.
	1분기	52	0.55	0.80	Synedra sp.	42	0.59	0.81	Asterionella sp.	35	0.44	0.83	Stephanodiscus sp.	51	0.79	0.67	Synedra sp.
	2분기	85	0.85	0.61	Aphanizomenon sp.	79	0.91	0.59	Aphanizomenon sp.	73	1.13	0.43	Aphanizomenon sp.	62	0.81	0.62	Aphanizomenon sp
721	3분기	98	0.93	0.57	Microcystis sp.	79	0.91	09:0	Microcystis sp.	81	1.16	0.45	Mcrocystis sp.	83	1.00	0.51	Microcystis sp.
	4분기	61	0.64	0.73	Aulacoseira sp.	77	0.89	0.61	Microcystis sp.	63	0.76	09.0	<i>Synura</i> sp.	61	0.79	0.65	Microcystis sp.
	1분기	99	0.72	0.65	Stephanodiscus sp.	54	0.94	0.54	Stephanodiscus sp.	33	0.22	0.95	Stephanodiscus sp.	52	0.84	0.60	Fragilaria sp.
	2분기	78	0.92	0.53	Microcystis sp.	80	0.97	0.47	Microcystis sp.	82	1.05	0.46	Microcystis sp.	64	0.93	0.55	Microcystis sp.
	3분기	76	99.0	0.76	Microcystis sp.	70	0.57	0.78	Microcystis sp.	77	1.01	0.56	Microcystis sp.	09	0.53	0.83	Microcystis sp.
•	4분기	29	0.80	0.63	Microcystis sp.	63	0.76	0.70	Microcystis sp.	65	88	0.62	Aulacoseira sp.	57	0.79	0.66	Microcystis sp.

Aulacoseira sp. Aphanizomenon sp. Microcystis sp.

편모조류

计조류

计交非

그림 7. 식물플랑크톤 주요 우점종

Synura sp.

Stephanodiscus sp.

Fragilaria sp.

0

2

5. 퇴적물 조사결과

O 유기물 및 영양염류

- 낙동강에 비해 서낙동강, 평강천 및 맥도강의 오염도가 높았음
- 유기물(완전연소가능량)은 낙동강 본류, 서낙동강, 평강천이 I ~ Ⅱ등급, 맥도강이 오염도 가장 높은 IV등급
- 총질소 농도는 모든 지점에서 Ⅰ ~ Ⅱ등급
- 총인 농도는 낙동강 본류와 서낙동강 I ~ Ⅱ 등급, 평강천 Ⅲ등급(주의가 필요한 오염된 상태), 맥도강이 가장 오염도가 높은 Ⅳ등급(심각하고 명백한 오염)

O 중금속류

- 낙동강에 비해 서낙동강, 평강천 및 맥도강의 오염도가 높았으며, 서낙동강의 오염도가 가장 높았음
 - 낙동강 전 지점(물금~ 낙동강 하굿둑)과 맥도강은 금속류 [등급
 - •서낙동강은 구리, 납, 아연, 카드뮴 II등급이며, 나머지 금속류 II등급, 평강천은 구리, 수은, 카드뮴 III등급이며, 나머지 금속류 II등급

○ 지점별 오염평가

- 본류 지점별 보통 ~ 약간 나쁨 단계, 서낙동강과 평강천 약간 나쁨 단계, 맥도강은 총인 IV등급으로 매우 나쁨 단계임

표 4. 퇴적물 조사 결과(2022년 연평균)

			유기남	물 및 영영	영류				금속	·류			
	지점명 수지점)	오염* 단계	완전연소 가능량 (%)		총인	구리 (mg/kg) (등급)	납 (mg/kg) (등급)	니켈 (mg/kg) (등급)	비소 (mg/kg) (등급)	수은 (mg/kg) (등급)	아연 (mg/kg) (등급)	카드뮴 (mg/kg) (등급)	크 <u>롬</u> (mg/kg) (등급)
	물금 취수장	보통	0.5	불검출	240	28.8	31.5	13.3	7.1	0.03	64.5	불검출	29.3
11	대동 화명대교	보통	0.9	662	354	23.4	16.0	15.8	7.7	0.03	71.5	불검출	31.4
낙 동 강	구포대교	약간 나쁨	3.3 (II)	780	547 (Ⅱ)	18.0	20.4	19.2	9.2	0.03	65.8	불검출	41.2
0	서부산 낙동강교	약간 나쁨	0.7	불검출	557 (II)	20.8	18.0	15.4	9.5	0.02	69.5	불검출	37.8
	낙동강 하굿둑	약간 나쁨	1.3	1655 (Ⅱ)	766 (II)	36.6	24.1	25.3	10.8	0.06	127.9	불검출	51.7
	- 도선착장 구름병제함였	약간 나쁨	3.3 (II)	1195 (II)	573 (II)	28.5	22.2	18.1	8.5	0.04	98.3	불검출	41.3
서낙 동강	김해교	약간 나쁨	2.5	746	754 (II)	56.6 (II)	76.5 (II)	25.0	10.1	0.06	471.8 (II)	0.6 (II)	67.8
평강천	울만교	약간 나쁨	2.2	1516 (II)	1407 (Ⅲ)	74.1 (II)	47.6	19.2	11.0	0.07 (II)	197.5	0.4 (II)	49.0
맥도강	신노전교	매우 나쁨	12.7 (IV)	2074 (II)	1611 (IV)	35.2	25.8	20.0	10.0	0.05	145.3	불검출	42.3

^{*} 하천.호소 퇴적물 오염평가 기준(일부개정, 2022. 7. 1 시행), ()안 등급표시 외 모두 I등급

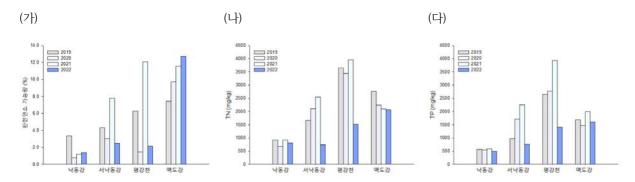


그림 8. 연도별 퇴적물 (가)완전연소가능량, (나)총질소, (다)총인 농도변화(2019-2022)

표 5. 연도별 퇴적물 중금속 오염단계(2019-2022)

	78	중금속 에 의한 오염	명가 단계(연평균)*	수계별 I 등급 기준초과
	2019	2020	2021	2022	항목(2022년)
낙동강	보통	보통	보통	보통	-
서낙동강	보통	매우 나쁨	매우 나쁨	약간 나쁨	총인, 구리, 납, 아연, 카드뮴
평강천	매우 나쁨	매우 나쁨	매우 나쁨	약간 나쁨	총질소, 총인, 구리, 수은, 카드뮴
맥도강	매우 나쁨	보통	매우 나쁨	매우 나쁨	완전연소가능량, 총질소, 총인

- * 하천·호소 퇴적물 오염평가 기준의 [별표 3] 하천·호소 퇴적물 지점별 오염평가기준 적용
- ** 낙동강 5지점 평균

6. 결론

- 유기물질 및 영양염류 지표에 따른 수질 오염도는 본류가 서낙동강 등 지류에 비해 오염도 낮음
 - 낙동강은 녹조로 인한 유기물질 농도가 증가한 하절기를 제외하고는 연중 양호한 수질을 보였으며, 서낙동 강과 평강천·맥도강은 상대적으로 오염도가 높고 하절기에 강우로 인한 오염원 유입과 유기물질 농도 증가 로 계절적인 수질 변동폭이 큼
- O 수질 중금속 및 시안, 페놀 등은 모든 지점에서 불검출이었음.
- 동물플랑크톤은 연중 윤충류가 우점하였으며 식물플랑크톤은 하절기에 남조류가 우점하였으며 동절기 규조 류 증가 등 계절적 천이를 보임
 - 녹조 발생시 남조류 우점종은 주로 마이크로시스티스였음
 - 전년대비 수온상승과 강우부족으로 낙동강 녹조발생 빈번
- 하천 퇴적물 오염평가 기준에 따른 유기물, 영양염류 및 금속류 오염도는 맥도강 > 평강천 > 서낙동강 > 낙동강 순임
 - 낙동강은 보통, 서낙동강, 평강천 및 맥도강은 약간 나쁨 ~ 매우 나쁨 단계를 나타내었으며 유기물질(완전연 소가능량) 농도는 맥도강에서 지속적으로 오염도가 높았으며, 영양염류 중 총인의 농도는 본류와 서낙동강 은 I~ Ⅱ등급으로 오염도 높지 않았으며, 지류인 평강천(Ⅲ등급)과 맥도강(Ⅳ등급) 오염도 높음

7. 활용방안 및 기대효과

- 지속적인 수질 및 동식물 플랑크톤, 퇴적물 모니터링으로 낙동강 수질개선 및 관리 방안수립의 기초 자료 제공
- 유관기관과의 지속적인 자료 공유로 수질관리 효율 증대