산성강하물 조사

- 산성강하물의 화학적 특성 파악 및 장기적·지속적인 모니터링
- 광역오염현상 규명 및 산성비 저감대책 수립을 위한 정책자료 제공

1. 조사개요

- 조사기간:2010년 1월 ~ 12월
- 조사목적: 부산지역 산성강하물의 지속적인 모니터링으로 습성강하물(강우)의 특성을 파 악하여 대기환경 개선 정책계획 수립 등 기초 자료로의 활용 및 대기오염물질 장거리 이동 현상의 객관적 자료 확보
- 조사지점:4개 지점(광복, 학장, 기장, 광안) 지점 변경(2010년 6월) : 감전→학장

그림 1. 산성강하물 측정망 조사 지점

2. 조사방법

- 조사항목 : 강우량, pH, 음이온(Cl⁻, NO₃⁻, SO₄²⁻), 양이온(Na⁺, NH₄⁺, K⁺, Mg²⁺, Ca²⁺)
- 시료 채취 주기 : 1주일 간격 강우 자동채취
- 분석방법

담당부서 : 대기보전과 (☎888-6816) 과 장: 김광수, 담당자: 박기형

- ▷ pH : 주간단위로 시료를 채취한 뒤 실험실로 운반하여 pH를 측정하였으며, 평균값은 강우량을 고려한 가중평균값으로 하였다.
- ▷ 이온성분 분석 : 주간단위로 채취한 강우시료는 환경부 산성강하물측정망 운영지침을 준용하여 이온크로마토그래프 (미국 Dionex 社, DX-120)로 음이온 3개 성분 (Cl⁻, NO₃⁻, SO₄²⁻)을 분석하였으며 양이온 중 NH₄⁺ 이온은 자동 연속측정기 (BLTEC STAT-2000), 양이온 4개 성분 (Na⁺, K⁺, Mg²⁺, Ca²⁺)은 ICP-OES (Varian 社)를 이용하여 분석하였으며, 각 이온성분의 농도는 강우량을 고려한 가중평균으로 나타내었다. 이온성분의 분석을 위한 이온크로마토그래피 분석조건은 표 1과 같다.

표	1.	이온성분의	분석조건(양이온,	음이온)
---	----	-------	-----------	------

	Anions				
Column	IonPac AS14				
Guard Column	IonPac AG14				
Eluent	3.5 mM Sodium carbonate 1 mM Sodium bicarbonate				
Flow Rate	1.2 mL/min				
Detection	Suppressed Conductivity(ASRS)				

	Cations					
Power	1.2 kW					
Plasma gas flow	15 L/min					
Auxiliary gas flow	1.5 L/min					
Nebulizer gas flow	0.75 L/min					
RF power	1100 Watts					
Replicates	3 Times					

3. 조사결과

○ 강우량 및 pH

▷ 2010년 부산지역의 누적 강수량은 1442 mm로 전년도 대비 18.7% 감소하였으나, 평년 강수량(1971~2000년 30년간 평균치)인 1492 mm와 비슷한 수치를 나타내었다. 2010년도 연평균 pH는 4.7로 나타났으며, 월평균 pH는 4.4~5.5의 범위를 나타내었다.

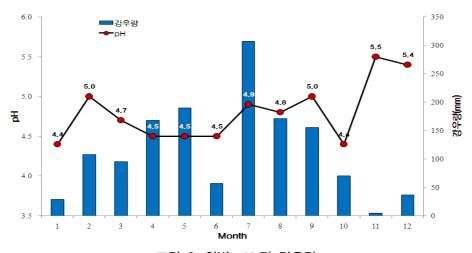


그림 2. 월별 pH 및 강우량

○ 연평균 강우산도

▷ 1994년부터 2010년까지 부산지역의 연평균 pH 추이는 표 2 및 그림 3과 같다. 2010년도 부산지역 4개 지점의 연평균 강우산도는 pH 4.7로서 전년과 유사한 수준이었으며 지점별 로는 4.5~4.9의 범위로 전년도의 4.5~4.8과 유사한 분포를 나타내었다.

표 2. 조사지점별 연평균 pH 농도 변화

 연도	광안동	광복동	감전동	기장읍
1994	4.5	4.5	-	_
1995	5.0	4.7	_	_
1996	5.3	4.9	4.9	5.1
1997	5.0	4.9	3.6	5.1
1998	6.3	4.9	5.5	5.0
1999	5.3	4.5	5.1	5.0
2000	5.1	4.6	5.3	4.8
2001	5.0	4.9	5.1	5.0
2002	4.9	4.5	4.7	4.6
2003	4.8	4.7	4.9	4.9
2004	4.8	4.8	4.9	4.9
2005	4.7	4.5	4.5	4.7
2006	4.7	4.8	5.2	4.7
2007	4.6	4.6	4.9	4.6
2008	4.6	4.6	4.7	4.6
2009	4.5	4.6	4.8	4.7
2010	4.6	4.7	4.9	4.5

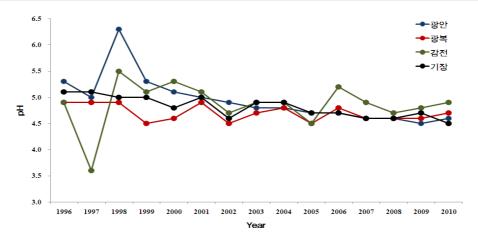


그림 3. 연도별 수소이온지수 추이

- 주요 도시의 강우산도 (2009년도 대기환경연보 자료 인용)
 - ▷ 환경부에서는 산성강하물의 침적량을 파악하기 위해 80~100 Km 간격의 격자로 나누어 전국 39개소에 산성강하물 측정망을 운영하고 있다. 표 3은 주요도시의 2009년 강우량에 따른 pH 가중평균을 나타낸 것으로 한반도 지역의 평균 pH는 4.8로 전년도의 4.9와 유사한 수준을 나타내었다.
 - ▷ 주요도시의 pH는 4.6~5.0의 범위로 지역별, 계절별 다소 차이를 나타내었다.

표 3. 주요도시의 연평균 pH

No.	지 점	рH	No.	지점	pH
1	서울(불광동)	4.7	5	부산(덕천동)	4.7
2	인천(구월동)	4.8	6	광주(농성동)	4.9
3	대전(구성동)	4.6	7	울산(신정동)	4.6
4	대구(지산동)	5.0	8	제주(고산리)	5.0

○ 월평균 강우산도

▷ 각 지점별 월평균 pH는 표 5에서와 같이 광안동이 4.3~5.4, 광복동 4.2~5.8, 학장동(감전동) 4.5~5.7, 기장읍 4.3~5.8의 분포를 나타내어 학장동(감전동)과 기장읍의 변화 폭이 가장 넓게 나타났다.

표 5. 2010년 월평균 pH와 누적 강우량

월별	광안동		광복동		학장동	· (감전동)	ブ]장읍	평균	
월 별	pН	강우량	рH	강우량	pН	강우량	pН	강우량	pН	강우량
1월	4.4	34.5	4.2	37.5	5.3	28.0	4.3	14.5	4.4	28.6
2월	4.8	90.5	5.1	89.5	5.6	121.5	4.8	128.5	5.0	107.5
3월	4.5	126.5	4.7	55.0	5.1	88.0	4.7	110.0	4.7	94.9
 4월	4.4	166.5	4.5	176.5	4.8	152.5	4.5	178.0	4.5	168.4
 5월	4.3	189.5	5.1	186.0	4.5	187.5	4.3	198.0	4.5	190.3
6월	4.5	97.0	3.9	6.5	5.5	51.0	4.3	74.8	4.5	57.3
7월	5.0	314.5	4.9	291.5	5.1	311.0	4.7	311.3	4.9	307.1
8월	4.8	161.0	4.9	165.0	4.8	209.5	4.7	148.5	4.8	171.0
9월	4.8	158.0	5.2	182.5	5.4	126.0	_	_	5.0	155.5
10월	4.4	84.5	4.3	72.5	4.7	49.5	4.4	74.0	4.4	70.1
 11월	5.4	3.0	5.8	2.0	5.3	7.5	-	_	5.5	4.2
12월	5.3	38.5	5.4	38.5	5.7	34.0	5.8	36.5	5.4	36.9
평균	4.6	1464.0	4.7	1303.0	4.9	1366.0	4.5	1274.1	4.7	1351.8

○ 습성강하물 침적량(gm⁻²vr⁻¹)

- ▷ 강우에 의한 습성강하물 침적량은 농도(mg/L)에 강우량(mm)을 곱하여 산출하였으며 산정된 부산지역의 연간 평균 침적량은 총 음이온 8.823 gm⁻²yr⁻¹ 및 총 양이온 4.342 gm⁻²yr⁻¹으로 조사되었으며, 음이온/양이온 비율은 2.03으로 2009년도 전국 평균인 2.27보다 다소 낮은 값을 나타내어 양이온의 기여율이 상대적으로 높게 나타났다.
- ▷ 표 6에는 각 성분별 연간 침적량을 나타내었으며, 항목별 침적량(gm⁻²yr⁻¹)은 SO₄²⁻ 4.319. NO_3^- 1.895, CI_3^- 2.609, Na_3^+ 2.529, K_3^+ 0.297, Ca_3^{2+} 0.570, Mg_3^{2+} 0.245, NH_4^+ 0.663, H_3^+ 0.038 등 으로 나타나 음이온 중에는 SO42-의 침적량이 가장 많았으며, 양이온 중에는 Na⁺의 침적량이 가장 많은 것으로 나타났다.

표 6. 연간 습성강하물 침적량

 $(gm^{-2}vr^{-1})$

항목	음이온					양이온						
지점,연도	SO ₄ ²⁻	NO ₃	C1 ⁻	합계	Na⁺	K ⁺	Ca ²⁺	$\mathrm{Mg}^{2^{+}}$	NH4 [†]	$\mathbf{H}^{^{+}}$	합계	
2010년(광안)	4.319	1.895	2.609	8.823	2.529	0.297	0.570	0.245	0.663	0.038	4.342	
2009년 평균	3.186	1.562	1.978	6.726	1.221	0.157	0.671	0.182	0.724	0.041	2.956	
'09년(전국)	3.02	1.74	1.97	6.73	0.92	0.50	0.23	0.15	0.85	0.03	2.67	

4. 결 론

- 가중평균 pH는 4.7로 前年 대비 0.1 증가하여 강우산도가 다소 감소하였다.
- 지점별 연평균 pH는 광안 4.6, 광복 4.7, 학장(감전) 4.9, 기장 4.5로 前年 대비 광안·광 복·학장 지점 0.1씩 증가, 기장지점 0.2 감소하였다.
- 연도별 pH 추이는 2000년 이후 4.5~5.0으로 수렴되는 경향을 보이며, 지점별 차이는 크게 나타나지 않으나 감전동의 경우 약간 높은 양상을 나타내었다.
- 연간 습성강하물 침적량(gm²yr¹)은 음이온 8.823, 양이온 4.342였으며, 음이온/양이온 비율 은 2.03으로, 2009년 전국평균 2.27보다 다소 낮은 값을 나타내어 양이온 기여율이 상대적 으로 높게 나타났다.